期刊目錄列表 - 42期革新版(1997.10) - 【數理與科技類】42期
Directory

解多項式零位之平行演算法
作者:左台益(國立臺灣師範大學數學系)

卷期:42期(革新版)
日期:1997年10月
頁碼:1-6
DOI:10.6301/JNTNU.1997.42.01

摘要:

本文研究適合平行計算之二種演算法Weierstrass法及Aberth法以求解多項式之零位。我們說明由函數疊代分析可以導出此二種演算法。同時也驗證Weierstrass法可由不動點疊代法結合隱式除法計算導出,而牛頓法結合隱式除法可以計算出Aberth法。

關鍵詞:平行計算、函數疊代分析、解零位、隱式除法

《詳全文》

中文APA引文格式左台益(1997)。解多項式零位之平行演算法。師大學報:數理與科技類42(革新版),1-6。https://doi.org/10.6301/JNTNU.1997.42.01
APA FormatTso, T.-Y. (1997). The derivation of two parallel zero-finding algorithms of polynomials. Journal of National Taiwan Normal University: Mathematics, Science & Technology, 42(New Version), 1-6. https://doi.org/10.6301/JNTNU.1997.42.01

Journal directory listing - Volume 42 (1997/October) - Mathematics, Science & Technology【42】
Directory

The Derivation of Two Parallel Zero-Finding Algorithms of Polynomials
Author: Tai-Yih Tso (Department of Mathmatics, National Taiwan Normal University)

Vol.&No.:Vol. 42 (New Version)
Date:October 1997
Pages:1-6
DOI:10.6301/JNTNU.1997.42.01

Abstract:

In this paper we study the derivation of two famous algorithms for finding all zeros of a giving polynomial. These two algorithms which are the Weierstrass method and the Aberth method are highly suited for parallel computing. It is explained that both of the two algorithms can be arrived by the functional iteration analysis. We also show that the the Weierstrass method and the Aberth method can be derived by the fixed point iteration method and the Newton method, respectively, together with the implicit deflation scheme.

Keywords:parallel computing, functional iteration analysis, zeros-finding, implicit deflation