期刊目錄列表 - 63卷(2018) - 【教育科學研究期刊】63(3)九月刊
Directory
社會影響與系統特性對高齡者再次使用產銷履歷系統意願的影響─信任、態度與科技接受模型之整合
作者:國立臺灣師範大學社會教育學系林鴻洲、國立臺灣師範大學社會教育學系張德永、財團法人中衛發展中心企業輔導部郭素蕙
卷期:63卷第3期
日期:2018年9月
頁碼:291-319
DOI:10.6209/JORIES.201809_63(3).0010
摘要:
本研究主要聚焦於當高齡者使用臺灣農產品安全追溯資訊網時,社會影響與系統特性對其知覺有用性與知覺易用性的影響;本研究更進一步探討消費者的知覺有用性與知覺易用性對消費態度與再次使用意願的影響。本研究針對高齡消費者發放紙本問卷,有效回收400份的問卷,並透過驗證式因素分析與結構方程式進行分析。研究結果顯示,樣本平均年齡為57.61歲,受測者有21.8%曾經使用過產銷履歷系統,有59%曾經購買過產銷履歷產品。研究結果發現高齡消費者的主觀規範、形象、能見度會影響其知覺有用性;而臺灣農產品安全追溯資訊網的資訊品質與系統品質會影響消費者的知覺易用性。另外,本研究也發現,對產銷履歷農產品制度的信任會正向影響消費者的再次使用意願。本研究提出實務建議,未來針對高齡者的科技創新及應用之接受度之培力訓練課程是必要的,因為高齡者可以藉此強化其友伴團體的社交網絡和學習行為,對其接受創新科技與新知分享會有增強作用;在高齡者健康教育與高齡消費者教育的相關議題中融入與產銷履歷的食農教育,在課程規劃、教學設計、教材研發,甚至資訊分享(如高齡消費者手冊)方面強化其深度與廣度;與高齡者的資訊溝通與社會學習議題之操作策略應該著重在體驗學習,藉由體驗學習,帶動高齡者在實作中的真實感受,藉由理性認知、情感融入及技能之行為改變,更進一步達成其接受新知與提升生活知能的效果。
關鍵詞:系統特性、社會影響、高齡者、健康、產銷履歷農產品標章
《詳全文》
參考文獻:
- Aboelmaged, M. G. (2010). Six Sigma quality: A structured review and implications for future research. International Journal of Quality & Reliability Management, 27(3), 268-317. doi:10. 1108/02656711011023294
- Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405-420. doi:10.1016/j.elerap.2004.05.001
- Akudugu, M. A., Guo, E., & Dadzie, S. K. (2012). Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions. Journal of Biology, Agriculture and Healthcare, 2(3), 1-13.
- Bigné-Alcañiz, E., Ruiz-Mafé, C., Aldás-Manzano, J., & Sanz-Blas, S. (2008). Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Information Review, 32(5), 648-667. doi:10.1108/14684520810914025
- Blau, P. M. (1964). Exchange and power in social life. New York, NY: John Wiley & Sons. doi:10.4324/9780203792643
» 展開更多
- Aboelmaged, M. G. (2010). Six Sigma quality: A structured review and implications for future research. International Journal of Quality & Reliability Management, 27(3), 268-317. doi:10. 1108/02656711011023294
- Ahn, T., Ryu, S., & Han, I. (2004). The impact of the online and offline features on the user acceptance of Internet shopping malls. Electronic Commerce Research and Applications, 3(4), 405-420. doi:10.1016/j.elerap.2004.05.001
- Akudugu, M. A., Guo, E., & Dadzie, S. K. (2012). Adoption of modern agricultural production technologies by farm households in Ghana: What factors influence their decisions. Journal of Biology, Agriculture and Healthcare, 2(3), 1-13.
- Bigné-Alcañiz, E., Ruiz-Mafé, C., Aldás-Manzano, J., & Sanz-Blas, S. (2008). Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Information Review, 32(5), 648-667. doi:10.1108/14684520810914025
- Blau, P. M. (1964). Exchange and power in social life. New York, NY: John Wiley & Sons. doi:10.4324/9780203792643
- Blažun, H., Saranto, K., & Rissanen, S. (2012). Impact of computer training courses on reduction of loneliness of older people in Finland and Slovenia. Computers in Human Behavior, 28(4), 1202-1212. doi:10.1016/j.chb.2012.02.004
- Byun, H., Chiu, W., & Bae, J.-S. (2018). Exploring the adoption of sports brand apps: An application of the modified Technology Acceptance Model. International Journal of Asian Business and Information Management, 9(1), 52-65. doi:10.4018/IJABIM.2018010105
- Cao, M., Zhang, Q., & Seydel, J. (2005). B2C e-commerce web site quality: An empirical examination. Industrial Management & Data Systems, 105(5), 645-661. doi:10.1108/02635570 510600000
- Chadwick-Dias, A., McNulty, M., & Tullis, T. (2003). Web usability and age: How design changes can improve performance. In M. Zajicek & A. Edwards (Ed.), CUU’03 proceedings of the 2003 conference on universal usability (pp. 30-37). Vancouver, Canada: Association for Computing Machinert. doi:10.1145/957205.957212
- Chen, S. Y.-C. (2014). Learning process and effects of incorporating intergenerational learning in a social gerontology course. Journal of Research in Education Sciences, 59(3), 1-28. doi:10. 6209/JORIES.2014.59(3).01
- Chen, Y.-R. R., & Schulz, P. J. (2016). The effect of information communication technology interventions on reducing social isolation in the elderly: A systematic review. Journal of Medical Internet Research, 18(1). doi:10.2196/jmir.4596
- Cheong, J. H., & Park, M.-C. (2005). Mobile internet acceptance in Korea. Internet Research, 15(2), 125-140. doi:10.1108/10662240510590324
- Chung, J. E., Park, N., Wang, H., Fulk, J., & McLaughlin, M. (2010). Age differences in perceptions of online community participation among non-users: An extension of the Technology Acceptance Model. Computers in Human Behavior, 26(6), 1674-1684. doi:10.1016/j.chb.2010.06.016
- Council of Agriculture, Executive Yuan. (2016). Traceable agricultural product status quo and prospect. Retrieved from https://eng.coa.gov.tw/ws.php?id=2505334
- Council of Agriculture, Executive Yuan. (2017a). Agricultural and Food Traceability (TAFT) website. Retrieved from https://taft.coa.gov.tw/mp.asp?mp=1&role=C&top=A&nowPage=1&PerPage Size=10&mpap=B
- Council of Agriculture, Executive Yuan. (2017b). What is the traceable agriculture product? Retrieved from http://taft. coa.gov.tw/ct.asp?xItem=4&CtNode=206&role=C
- Crespo, Á. H., & Rodríguez, I. A. R. D. B. (2008). Explaining B2C e-commerce acceptance: An integrative model based on the framework by Gatignon and Robertson. Interacting with Computers, 20(2), 212-224. doi:10.1016/j.intcom.2007.11.005
- Dasgupta, P. (1988). Trust as commodity. In D. Gambetta (Ed.), Trust: Making and breaking cooperative relations (pp. 49-72). New York, NY: Basil Blackwell.
- Davis, F. D. (1986). A Technology Acceptance Model for empirically testing new end-user information systems: Theory and results (Unpublished doctoral dissertation). Massachusetts Institute of Technology, Cambridge, MA.
- DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the dependent variable. Information Systems Research, 3(1), 60-95. doi:10.1287/isre.3.1.60
- DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9-30. doi:10. 1080/07421222.2003.11045748
- DeLone, W. H., & McLean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31-47. doi:10.1080/10864415.2004.11044317
- Dillon, A. (2001). User acceptance of information technology. In W. Karwowski (Ed.), International encyclopedia of ergonomics and human factors (pp. 1-6). London, UK: Taylor and Francis.
- Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Boston, MA: Addison-Wesley.
- Flavián, C., Guinalíu, M., & Gurrea, R. (2006). The role played by perceived usability, satisfaction and consumer trust on website loyalty. Information & Management, 43(1), 1-14. doi:10.1016/ j.im.2005.01.002
- Fukuyama, F. (1995) Trust: The social virtues and the creation of prosperity. New York, NY: The Free Press.
- Gambetta, D. G. (1988). Can we trust trust? In D. G. Gambetta (Ed.), Trust: Making and breaking cooperative relations (pp. 213-237). New York, NY: Basil Blackwell.
- Gefen, D. (2000). E-commerce: The role of familiarity and trust. Omega, 28(6), 725-737. doi:10. 1016/S0305-0483(00)00021-9
- Gefen, D., Karahanna, E., & Straub, D. W. (2003a). Inexperience and experience with online stores: The importance of TAM and trust. IEEE Transactions on Engineering Management, 50(3), 307-321. doi:10.1109/TEM.2003.817277
- Gefen, D., Karahanna, E., & Straub, D. W. (2003b). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90. doi:10.2307/30036519
- Gonzalez, G. C., Sharma, P. N., & Galletta, D. (2012). Factors influencing the planned adoption of continuous monitoring technology. Journal of Information Systems, 26(2), 53-69. doi:10.2308/ isys-50259
- Gulati, R. (1995). Does familiarity breed trust? The implications of repeated ties for contractual choice in alliances. Academy of Management Journal, 38(1), 85-112. doi:10.2307/256729
- Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a Technology Acceptance Model. Journal of Business Research, 62(5), 565-571. doi:10.1016/j.jbusres. 2008.06.016
- Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate data analysis (6th ed.). Englewood Cliffs, NJ: Prentice-Hall.
- Herath, T., & Rao, H. R. (2009). Protection motivation and deterrence: A framework for security policy compliance in organisations. European Journal of Information Systems, 18(2), 106-125. doi:10.1057/ejis.2009.6
- Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853-868. doi:10.1016/j.im. 2003.08.014
- Huang, J.-H., Lin, Y.-R., & Chuang, S.-T. (2007). Elucidating user behavior of mobile learning: A perspective of the extended Technology Acceptance Model. The Electronic Library, 25(5), 585-598. doi:10.1108/02640470710829569
- Ilie, V., Van Slyke, C., Green, G., & Lou, H. (2005). Gender differences in perceptions and use of communication technologies: A diffusion of innovation approach. Information Resources Management Journal, 18(3), 13-31. doi:10.4018/irmj.2005070102
- Jarvenpaa, S. L., & Todd, P. A. (1996). Consumer reactions to electronic shopping on the World Wide Web. International Journal of Electronic Commerce, 1(2), 59-88. doi:10.1080/10864415. 1996.11518283
- Jarvenpaa, S. L., Tractinsky, N., & Saarinen, L. (1999). Consumer trust in an internet store: A cross‐cultural validation. Journal of Computer‐Mediated Communication, 5(2), 1-35. doi:10.1111/j. 1083-6101.1999.tb00337.x
- Jones, S., & Fox, S. (2009). Generations online in 2009. Washington, DC: Pew Internet & American Life Project.
- Kim, H.-B., Kim, T. T., & Shin, S. W. (2009). Modeling roles of subjective norms and eTrust in customers’ acceptance of airline B2C eCommerce websites. Tourism Management, 30(2), 266-277. doi:10.1016/j.tourman.2008.07.001
- Kim, J., & Park, J. (2005). A consumer shopping channel extension model: Attitude shift toward the online store. Journal of Fashion Marketing and Management: An International Journal, 9(1), 106-121. doi:10.1108/13612020510586433
- Kim, S., & Garrison, G. (2009). Investigating mobile wireless technology adoption: An extension of the Technology Acceptance Model. Information Systems Frontiers, 11(3), 323-333. doi:10.1007/s10796-008-9073-8
- Kumar, N., Scheer, L. K., & Steenkamp, J.-B. E. M. (1995). The effects of supplier fairness on vulnerable resellers. Journal of Marketing Research, 32(1), 54-65. doi:10.2307/3152110
- Lanseng, E. J., & Andreassen, T. W. (2007). Electronic healthcare: A study of people’s readiness and attitude toward performing self-diagnosis. International Journal of Service Industry Management, 18(4), 394-417. doi:10.1108/09564230710778155
- Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The Technology Acceptance Model and the World Wide Web. Decision Support Systems, 29(3), 269-282. doi:10.1016/S0167- 9236(00)00076-2
- Lee, J. Y.-H., & Panteli, N. (2010). Business strategic conflict in computer-mediated communication. European Journal of Information Systems, 19(2), 196-208. doi:10.1057/ejis.2010.4
- Lee, M. K. O., Shi, N., Cheung, C. M. K., Lim, K. H., & Sia, C. L. (2011). Consumer’s decision to shop online: The moderating role of positive informational social influence. Information & Management, 48(6), 185-191. doi:10.1016/j.im.2010.08.005
- Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the Technology Acceptance Model. Information & Management, 40(3), 191-204. doi:10.1016/S0378-7206(01)00143-4
- Liaw, S.- S., & Huang, H.-M. (2003). An investigation of user attitudes toward search engines as an information retrieval tool. Computers in Human Behavior, 19(6), 751-765. doi:10.1016/S0747- 5632(03)00009-8
- Lin, H.-F. (2007). Predicting consumer intentions to shop online: An empirical test of competing theories. Electronic Commerce Research and Applications, 6(4), 433-442. doi:10.1016/j.elerap. 2007.02.002
- Lin, H.-F. (2008). Antecedents of virtual community satisfaction and loyalty: An empirical test of competing theories. CyberPsychology & Behavior, 11(2), 138-144. doi:10.1089/cpb.2007.0003
- Liu, C., & Arnett, K. P. (2000). Exploring the factors associated with Web site success in the context of electronic commerce. Information & Management, 38(1), 23-33. doi:10.1016/S0378-7206(00) 00049-5
- Luhmann, N. (1979). Trust and power. Chichester, UK: John Wiley & Sons.
- McKechnie, S., Winklhofer, H., & Ennew, C. (2006). Applying the Technology Acceptance Model to the online retailing of financial services. International Journal of Retail & Distribution Management, 34(4/5), 388-410. doi:10.1108/09590550610660297
- Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222. doi:10.1287/isre.2.3.192
- Moorman, C., Zaltman, G., & Deshpande, R. (1992). Relationships between providers and users of market research: The dynamics of trust within and between organizations. Journal of Marketing Research, 29(3), 314-328. doi:10.2307/3172742
- Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions: Implications for a changing work force. Personnel Psychology, 53(2), 375-403. doi:10.1111/j. 1744-6570.2000.tb00206.x
- Morris, M. G., Venkatesh, V., & Ackerman, P. L. (2005). Gender and age differences in employee decisions about new technology: An extension to the theory of planned behavior. IEEE Transactions on Engineering Management, 52(1), 69-84. doi:10.1109/TEM.2004.839967
- Mun, Y. Y., Jackson, J. D., Park, J. S., & Probst, J. C. (2006). Understanding information technology acceptance by individual professionals: Toward an integrative view. Information & Management, 43(3), 350-363. doi:10.1016/j.im.2005.08.006
- Nelson, R. R., Todd, P. A., & Wixom, B. H. (2005). Antecedents of information and system quality: An empirical examination within the context of data warehousing. Journal of Management Information Systems, 21(4), 199-235. doi:10.1080/07421222.2005.11045823
- Park, S. Y., Nam, M. W., & Cha, S. B. (2012). University students’ behavioral intention to use mobile learning: Evaluating the Technology Acceptance Model. British Journal of Educational Technology, 43(4), 592-605. doi:10.1111/j.1467-8535.2011.01229.x
- Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the Technology Acceptance Model. International Journal of Electronic Commerce, 7(3), 101-134. doi:10.1080/10864415.2003.11044275
- Read, W., Robertson, N., & McQuilken, L. (2011). A novel romance: The Technology Acceptance Model with emotional attachment. Australasian Marketing Journal, 19(4), 223-229. doi:10.1016/ j.ausmj.2011.07.004
- Reichheld, F. F., & Schefter, P. (2000). E-loyalty: Your secret weapon on the Web. Harvard Business Review, 78(4), 105-113.
- Roca, J. C., Chiu, C.-M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: An extension of the Technology Acceptance Model. International Journal of Human-Computer Studies, 64(8), 683-696. doi:10.1016/j.ijhcs.2006.01.003
- Schofield, J. W. (1975). Effect of norms, public disclosure, and need for approval on volunteering behavior consistent with attitudes. Journal of Personality and Social Psychology, 31(6), 1126- 1133. doi:10.1037/h0076947
- Shen, J. (2012). Social comparison, social presence, and enjoyment in the acceptance of social shopping websites. Journal of Electronic Commerce Research, 13(3), 198-212.
- Shin, D.-H. (2010). Analysis of online social networks: A cross-national study. Online Information Review, 34(3), 473-495. doi:10.1108/14684521011054080
- Shin, D.-H., & Kim, W.-Y. (2008). Applying the Technology Acceptance Model and flow theory to Cyworld user behavior: Implication of the Web 2.0 user acceptance. CyberPsychology & Behavior, 11(3), 378-382. doi:10.1089/cpb.2007.0117
- Smith, R., Deitz, G., Royne, M. B., Hansen, J. D., Grünhagen, M., & Witte, C. (2013). Cross-cultural examination of online shopping behavior: A comparison of Norway, Germany, and the United States. Journal of Business Research, 66(3), 328-335. doi:10.1016/j.jbusres. 2011.08.013
- Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64(2), 53-78. doi:10.1016/j.ijhcs.2005.04.013
- Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. doi:10.1287/isre.6.2.144
- Teo, H. H., Chan, H. C., Wei, K. K., & Zhang, Z. (2003). Evaluating information accessibility and community adaptivity features for sustaining virtual learning communities. International Journal of Human-Computer Studies, 59(5), 671-697. doi:10.1016/S1071-5819(03)00087-9
- Thong, J. Y. L., Hong, W., & Tam, K.-Y. (2002). Understanding user acceptance of digital libraries: What are the roles of interface characteristics, organizational context, and individual differences? International Journal of Human-Computer Studies, 57(3), 215-242. doi:10.1016/S1071-5819(02) 91024-4
- Tong, X. (2010). A cross-national investigation of an extended technology acceptance model in the online shopping context. International Journal of Retail & Distribution Management, 38(10), 742-759.
- Tsai, M.-T., Cheng, N.-C., & Chen, K.-S. (2011). Understanding online group buying intention: The roles of sense of virtual community and technology acceptance factors. Total Quality Management & Business Excellence, 22(10), 1091-1104. doi:10.1080/14783363.2011.614870
- Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186-204. doi:10.1287/mnsc.46.2. 186.11926
- Wang, E. S.-T., & Chou, N. P.-Y. (2014). Consumer characteristics, social influence, and system factors on online group-buying repurchasing intention. Journal of Electronic Commerce Research, 15(2), 119-132.
- Williamson, O. E. (1985). The economic institutions of capitalism. New York, NY: Free Press.
- Yang, H.-D., Moon, Y. J., & Rowley, C. (2009). Social influence on knowledge worker’s adoption of innovative information technology. Journal of Computer Information Systems, 50(1), 25-36.
- Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007a). Technology acceptance: A meta-analysis of the TAM: Part 1. Journal of Modelling in Management, 2(3), 251-280. doi:10.1108/17465660 710834453
- Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007b). Technology acceptance: A meta-analysis of the TAM: Part 2. Journal of Modelling in Management, 2(3), 281-304. doi:10.1108/17465660 710834462
- Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2010). Explaining internet banking behavior: Theory of reasoned action, theory of planned behavior, or Technology Acceptance Model? Journal of Applied Social Psychology, 40(5), 1172-1202. doi:10.1111/j.1559-1816.2010.00615.x
Journal directory listing - Volume 63 (2018) - Journal of Research in Education Sciences【63(3)】september
Directory
Effects of Social Influence and System Characteristics on Traceable Agriculture Product Reuse Intention of Elderly People: Integrating Trust and Attitude Using the Technology Acceptance Model
Author: Hung-Chou Lin (Department of Adult and Continuing Education, National Taiwan Normal University), Te-Yung Chang (Department of Adult and Continuing Education, National Taiwan Normal University), Su-Hui Kuo (Department of Enterprise Consulting, Corporate Synergy Development Center)
Vol.&No.:Vol. 63, No.3
Date:September 2018
Pages:291-319
DOI:10.6209/JORIES.201809_63(3).0010
Abstract:
Products such as vegetables and fruits in markets in Taiwan have small green labels denoting that they are traceable agricultural products. This study investigated the effect of social influence and system characteristics on perceived usefulness (PU) and perceived ease of use (PEOU) regarding the Taiwan Agricultural and Food Traceability (TAFT) system. This study also examined the effects of PU and PEOU on attitudes and reuse intention, and employed confirmatory factor analysis and structural equation modelling to test the hypotheses. Questionnaires were developed and the measurement items were based on an extensive review of related studies to ensure content validity in addition to items from an original scale. Four hundred questionnaires from older adults were collected through a quantitative survey. The respondents were all aged between 50 and 90 years, with an average age of 57.61 years. Almost one quarter (21.8%) of respondents had experiences of using traceability quick response (QR) codes in 2016. Regarding purchase experience, 59% of the respondents had experiences of purchasing agricultural products using traceability QR codes. The results revealed that whereas subjective norms, image, and visibility have a positive effect on PU, information quality and system quality affected the PEOU of the TAFT system. Moreover, trust has a positive influence on reuse intention. A healthy diet plays a crucial role in the health promotion activities of elderly people. The findings could help those involved in the TAFT system improve their understanding of the attendant factors of PU and PEOU and promote positive attitudes in elderly people about this system, thereby increasing their reuse intentions.
Keywords:elderly people, health, social influence, system characteristics, traceable agricultural products