NUCLEAR STRIPPING REACTION
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One of the direct reactions to the nuclear process is called the
nuclear stripping, and its inverse is called the pick-up reaction. If
a complex bombarding particle encounters a nucleus, it can break up
on impact such that only one part of it interacts strongly with the
nucleus and the other part leaves with practically no interaction.
This was first recognized by Oppenheimer and Phillips(1) in analyz-

(2)

that (d, p) reactions were more frequent than (d,n) reactions. This

ing the low-energy (d,p) reactions'“’. It was observed experimentally
is completely opposite from what would be expected if the reaction
had proceeded through the formation of the compound nucleus. Be-
cause of the absence of the Comlomb barrier, there would be a pre-
ponderance of the (d,n) reactions over the (d,p) reactions.
Oppenheimer and Phillips explained the reaction by stating that
the deuteron is a loosely bound system with a small binding energy
and a large average separation (~4F). When it approaches the tar-
get nucleus the proton is detached from the deuteron due to the
Coulomb field, whereas the neutron is captured. At low energies,
this is known as the Oppenheimer and Phillips process, although it
is now more cémmonly known as the stripping process, at both low

(3)

reactions are equally probable. But what distinguishes the reaction

and high energies. In the high-energy region, the (d,p) and (d,n)

from other nuclear-reaction mechanisms is that the noninteracting

component of the bombarding particle travels off predominantly in
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the forward direction, i.e., in the direction of the incident beam.
The  stripping process at high energies was first considered by
Serber(4) who was interested in very high-energy deuteron. The
process can be illustrated as X(d,f)Y, where X is the ground state
of an initial nucleus of mass A, and Y a final nucleus having mass
A + 1. The final particle f is one of the two nucleons f:r:or’n the in-
cident deuteron, the other nucleon being denoted by ¢ (see Figure 1).

Serber's observations put emphasis on the total angular distribution

©
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Figure 1

of all particles f irrespective of what states, bound or virtual,of

nucleus Y are formed.

(5)

strated that the angular distribution of the forward peak is given by

The theoretical work of Butyler has very successfully demon-
the square of the spherical Bessel function of order 1, where 1 is
the angular momentum of the state in which c (it is neutron in the
case of the (d,p) reaction or proton in the case of the (d,n) reac-
tion] is captured. It is a single-step process, without the formation
of a compound nucleus. At short distances, due to the strong in-
teraction between the bombarded nucleus and ¢, ¢ is captured. The
uncaptured nucleon f proceeds in the forward direction giving a
forward peak. Eventually, it was found that a large number of

(6) 31 (« ,p)s34, Na23( 24 _ 7

nuclear reactions' ’, such as P d,p)Na“ ", Li
(p,d)Li6, C13(Hc3,a )C12, and many others showed charac-



#AARE 1D

teristics of "stripping" or the inverse "pick-up" reaction by the for-
ward peaking. The reactions (p,d) and (n,d) are known as the pick-
up reactions. The (p,d) process shows that when the incident proton

approaches Very closely to the

o

arget nucleus, there is a strong in-

The ( @, p) reaction with a forward peak is explained as the
stripping of a triton from the alpha particle (see Figure 2), and the
(p, @ ) reaction on the other hand is the reverse reaction, that is,
the pick-up of a triton by the proton from the target to form an alpha

as‘(ﬂip) and (d

A\ a

.n) are known as
T/

knock-out reactions, in which the incident particle strikes a particle

of another kind and ejected it.

op
(v particle { 3
o,T X® -®

Figure 2
I. Semiclassical Description of the Stripping Reaction

For the sake of simplicity we refer to a (d,p) process in this
description, ‘but since we ignore the Coulomb interaction, the argu-
ments are equally valid for a (d,n) process.

Since the number of protons remains unchanzged in a reaction,
all masses can be written as atomic masses if electron binding-
energy differences are ignored. As shown in Figure '3, conservation

of energy gives
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Mac®+1a +Mxc?®* =Mpc? +Tp» +My c? 4T, (1)
where T represents the kinetic energy of each particle in the labo-

Keh=MaVa
10p 7
. . M; V7, =kh
Koh =M, Vs
(c)
Figure 3

The Q value of the reaction is defined as the difference between

the final and initial kinetic energies
Q:Tp +Ty —Td
=(mae +Ms=x Yci— (My +Mp )c? (2)

We use the law of conservation of momentum

_P)d :?y —I—?)p (3 )

together with general relativistic relationship between momentum

and kinetic energy
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By applying the law of cosines to the momentum triangie, we obtain

Ty 2
2MYT +(T :ZMde—'—rI'g-z 4—9MnTn~LTD2 /hz

._2(:056\/( 2Ma T a +Ta? /GO 2Mp Tp+Tx;2 /C?)
- (5)

Ty?

The second-order terms such as a are negligible, and expan-

sion of square root gives

Ty = ra Moy, g cosgMMTaTr o))
M My My ’
where the relativistic correction term is

1

orel = Ta?+Te2-Ty2—
2M+C C P y cos 0vMaM» T Tre (
Ta Tor
¢ P (7)

In the (d,p) reaction Ty is so small compared with Td and Tp that
for the -purpose of calculating the relativistic correction, § rel,
we can set Ty = 0, or, we can use the classical expression.

Substitution of Equation (6) into Equation (2) gives the Q-value

equatlon \A\/I
My+Mo» M; Ma «M»TaT,
—_ —_
Q=(—7— v ) Te—¢ v, ) Te—2cosB N

8
+¢ rel ®)

In Figure 3, the deuteron, consisting of a neutron and a proton,

moves from left toward the target nucleus which is, fér the present,

- 5 =



7ith the deutron. The neu-
tron has joined the target nucleus to forfn a residual nucleus in a
specific state. The proton is moving away from the region with a
kinetic energy equal to the Q-value for the state in question plus the
kinetic energy of the deutron (with Ty=0).In the momentum diagram,
E—;h is the momentum of the deutron, andK‘:,'h is the momentum of
the proton; hence, ‘k;h is the momentum imparted to the residual
nucleus. WhenKa‘h ,ﬁph and §p are knownmh is given by
the cosine rule applied to the momentum triangle.

The assumption is now made that the proton does not come within
the range of nuclear forces from the targetnucleus and is not signi-
ficantly deflected by the Coulomb forces from the nucleus. The
linear momentum I)h imparted to the nucleus is then the momentum
that the neutron bring with it. The orbital angular momentum that
the neutron brings with it into the nucleus can also be estimated if a
reasonable assumption can be made about the magnitude of the impact
parameter of the neutron with respect to the center of mass. If we
assume that the impact parameter is approximately equal to R, the
nuclear radius, then the orbital angular momentum is khR . This
orbital angular momentum is quantized, i.e., it is equal toy/1 (1+1)h
where 1 is an integer.

This gives

KR=vV1(1+1) (9)

If the above model is not too crude, Equation (9) essentially ex-
presses the fact that it is possible to determine the orbital angular
momentum quantum number of the neutron by determining k. As
discussed above, k is given when the reaction angle and the kinetic

energies of the deuteron and the proton are given. Conclusion

- 6 -
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arrived is that when, for stripping to a certain level, only one value
of 1 occurs, the wave number k must satisfy Equation (9), and the
geometry of the process is thereby fixed. In other words, the proton
must come out at a given reaction angle Op which is found by apply-
ing the cosine rule to the momentum triangle.

Choosing a radius and applying the cosine rule to the momentum
triangle we can make predictions. For a 7-Mev deuteron with K4 =
0.82F" ! and a 13-Mev proton with Kp = 0.79F"" , we get the follow-

ing calculated results:

1=1, 6max=160;
1=2, 9max=29o;

1=3, O max = 420..

For 1 =0, the predicted angle for maximum cross section is imagi-
nary (cos@> 1), but § = O comes nearest to satisfying the equa-
tion. A survey of experimental results shows that the majority of
the angular distributions display strong forward maxima, in general
agreement with the predictions made above. Specifically, there are
many levels with maxima around 17° to 18° and others with maxima
around 400, suggesting stripping with neutrons going into 1 =1 and
1 = 3 orbits (p- and f- state stripping).

(3)

II. Theory of the Stripping Reaction

The stripping reaction can in general be written in the following

form:
(1+2)+3 51+ (2+23)
The parentheses in the first term denote the bound state of nuclei
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1 and 2. Similarly on the right, we have the bound state of nuclei 2

and 3; any one of them may be a single nucleon, proton or neutron.

r—y

Nucleus 3 is initially free, and nucle:

Thus, in a stripping (d,p) reaction d + X' —s p+X , We use ] =
A

*’. Similarly, in a pick-up (p,d) reaction p + X**
—d + XA_1 we have ] = XA_1 , 2=n, 3 =p. As another eka‘mple of

P, 2=n, and 3 = X

the pick-up reaction we consider the (p, @ ) reaction p + XA~> a +
XA‘3, in which 1 = XA’3, 2 = H3, and 3 = p.

As shown, in Figure 4, initially the momentum of particle 3 is P
and that of the bound nucleus (1 + 2) is - ﬁ, in the center-of-mass
system. Finally, the momentum of the frec particle 1 is Ef and that

N
of the bound nucleus (2 + 3) is - P,.

Figure 4

The initial momenta which can be ascribed to 1 and 2 are

M —> M. — *
~—— P+ and — —— P:
M. +M. M1 +M.
respectively, Similarly, the final momenta of 2 and 3 are
Mz - M 3 —>
- P« and - ¢
M. +M:; M: + M.

- 8 -
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respectively. If we denote the momentum transfer, which is the

difference between the final and initial momenta, by Eik for the k-th

particle where k=1, 2, 3, we have

q :—]:;f +“IF
41 M. i (1)%
P L L T (2)*
T M +Ms M: +M.
— —Ms — —

=—-P¢ -P; 3)%
9 M. +M: ! ( )

The reduced masses gi and gy, to be associated with the initial and

the final momenta are different. 77 and #r are given by

1 | 1

_ . (4)*
ﬂi —M1 +M2 Ms
1 1 1 (5)*
—_— =t
Mr Ml. M2 +M3
The total energy E is given by
7o P
E= : T €12 = i €23, (6)*
2#1 2/1{

where €12 and €2 are the binding energies of the initially and

finally, bound systems, (1+2) and (2+3), respectively. The Q-value
for the_r;eaction__}s given by

_sz‘ Piz
2pc " 2p,

(7

— €23 €12

If the coordinates of particles 1, 2, and 3 are specified by -?1,

> —
r:, and rg, then the centers of mass of (1+2) and (2+3) are at
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- r, + r
R 2 — and R23:._2 : e

— _ (8)*
M, + M, M.+ M,

respectively. Since the center-of-mass remains fixed, the inde-
pendent sets of coordinates are both the relative coordinates of the
particles in the bound system and the difference between the coordi-
nates of the free particle and the center of mass of these particles.
Thus,

i —> —> —_
r

. . . ._)
initially I3 =r; —T,, =r

3 _ﬁ 12 (9)*

i

[l

™) —Ra (10)*

finally Tes =Ty — Ty, ?f

are the set of independent coordinates initially and finally,with the

condition
Mir; +M,rs +M,r, =0 » (11)*

that is, the center-of-mass of the whole system is at rest. We can
determine the momenta P;, and Pi (?23 and?r) which are canoni-
cally conjugate to the coordinates ¥1; and ¥:i (¥2s and ¥r), respec-
tively, in terms of the momenta P , _ﬁz, and Ps which canonically
conjugate to Ti, Tz, and T, respectively. After expressing Ti,

F:, and T3, in terms of ¥i: and Ti, or T:s and ¥r, we obtain the

following expressions by settingf =1 - ¥
-~ _h 9 > 0Tk
Pe="T"F >~ £ Pr=—
1 0T, k=1,2 OT12 (12)*
h o 0T

L AR T

b
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Following this procedure, we obtain

D, n .
_:2 — L2 — - 13)%*
Pz = (Mx : ) (13)
— _IT))] +‘]32 ——;
Rl Vo v i vl (14)%
—_—> p2 p3
Pa2s = Has (Mz_l\—/ﬁ) (15)*
- _ P: P:+Ps (16)*
pf — e —

where
11
g M, M,
1 1 1
g M, M,

The kinetic energy operator Te in the center-of-mass system is

therefore

T Pt Pi* P. Pre

= + + (17)*
. 2/.!12 2}!1 2/323 2/,!:

The total Hamiltonian for the system is given by
H=T,+V,: +V,s +V,, (18)*

where V is the interaction potential between the particles indicated

by subscripts. If E is the total energy of the three particles in

- 11 -
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the center-of-mass system and ¥ is the wave function of the system,

then

HUY=E¥ _ (19)*

and (2 + 3) respectively, then the Schrodinger equations satisfied by

(]512 and 9523 are

ﬁlzz —
( 2;! +Vi. ) P12 (Trz) =—¢e12P12 ( Tz ) (20)*
P2s? -
(2; +V12)(ﬁza(rzs):"ezsqses(ﬂs) (21)*
28

— —
We denote by Xi(ri) and Xr(rr) the wave functions of the free

particle 3 with respect to the center-of-mass of (1+2) in the initial

state, and of 1 with respect to the center-of-mass of (2+3) in the
— >

final state, respectively. The wave functions ¥ (ri2, ri) and W

—  —>
(res, rr) can be expanded as follows:

W(re,r1)=2¢ a(r)X a(ry) (22)%
W(rae, Te)=2 G a (L)X a(Ty) (23)*

Where a signifies a complete set of states of the bound system and

the free particle. From Equations (22)*¥ and (23)% we obtain

X((Th) = S(ﬁﬁz(?xzﬂp(f"u , Tid®ry, (24)%
Xe(Te) = § % (?23)115' (T, Tr) d’rys (25)%

- 12 -
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To obtain the differential equation satisfied by Xr(¥), we note that
pe = - vr2, since Pr is the momentum canonically conjugate to the

coordinate ¥f, and from Equations (6)%, (17)%, (18)%, and (19)*, we

have &
—_ 13282 31'2 - 7 - 7 = 5 N — —_
AP(Tes,le) = + +Viet Vigh Vo )W(r, ,r,)
2/123 2/1f
pf'2 — — *
=( 2—” —c2 )W(Tss,Ty) (26)
Mt
2 o — —5282 '
or (Vt‘ +pf2)llr( Fes ,Fg) = +Vi+Vis+Vias+ €23) X
2 2 pras
‘lIf(?-zs,?;)

Applying the operator (Vi  + Pt?) to Xr (Fr) in Equation (25)% and
using Equations (20)%, (21)%, and (26)%, we obtain

(V2 +Dpe)x(TH) = Zﬂf j@‘;s(r—;s)[\hz +Vi: JW(Tes ,

- (27)*
re )ds  gPY

The solution for Xy (¥r) can be obtained by using the outgoing Green
function

expipe| T T
47 | T, —T|

Thus
- expip: |T;—T -
X, (Ty) =—2¢ PiP e~ Tl o o) (Ve + Vo JWder ud
. 2 | T7 — T

(28)*

In order that the total wave function Y describes the reaction

process (1 +2)+3—1+(2+3). The boundary condition imposed

- 13 -
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Ire—0CO : N

where f (@9, qS) is the reaction amplitude. Comparing Equations
(29)* and (28)* we obtain

© s

*
(6,¢9)=— j(p 8(T25)€”

If we accept the Born approximation which ignores the interaction
between the incident particle and the target nucleus in expressing Y’

as the product of the incident plane wave and the wave function of

lace W by

lez(?u)exp( 1131 T 12+i61 °?s) = 9512(?12)exp(i1-51 ‘?i)

The reaction amplitude (0, $) is given by
f( 93 (j)) —__ ngzs (I‘ za)e-l?t - Fr [sz‘f‘vujeim' 195 12(1'1:)

d’r,,d'r,:-zﬁn_ J(ﬁza(rzs)e—‘(a" 23— F12)

[vlz“"VlJ(f)n(?m)dar 12d°r 4, (31)*

where we have

——ﬁf'?f+_ﬁi‘F1 333-?23 —'ql‘?xz and d°r,,d’cr;=d’r,d®’r,,

The reaction cross section (0, 0) is given by the outgoing current

divided by the incident current density P;//l 1, that is, «
I £0X X R?
7(0,6) =glim 55 r_0X%

f)r _R
(142)+8— 1+ (2+8) "R or; arf Ps /M1

=Pt 1 £09,4) ]

LePi

(32)%
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=Ll %Xl j¢zs(?n)ei(q"r”—q"'r”)[Vn-i-vxs](f)n(rn)
J Di

dir,.d®r,,|?

quations (31)* an
X

interaction V 3 between particles 1 and 3. This is done because in
1
1

» 1 . . 2 3

+2)+3 — 1+ (2 + 3) particles 1 and 3 never appear

in a bound state. In the stripping reaction x4 (d,p) X » Vya= Vp’
A and the interaction V12 equals Vnp' The V12 term contributes
a nonvanishing result provided the final state contains components of
the core, the target nucleus, left in its ground state. On the other
13 will be

nonvanishing if the final state corresponds to excitation of the core.

hand, the contributicn arising from the interaction V

Generally, in a stripping reaction the contribution of the Vi3 in-

act
teraction is much less than that of V12 unless the final state involves
almost purely the excitation of the core. Hence, the cross section

can be written in the form of

_Mife _p_f_ 2
O(B,Qb)———_(zn_)z Di IF(Ba(ﬁ)I

where

F(6 s 95 )= ng"zga c ia;‘?”darzs [e-—i?ﬁ T Vo (F 12)9512(?12)d°r 12
(33)*
The same cross section can be obtained by using directly the re-

lationship

1=, ¢) (34)*
Hi
(8)

From the golden rule number two, the total translation rate is

given by
2 dN
g:F’HHﬁw.E (35)*



ne

volume V and the constant 2xz*h canbe adjusted by the normaliza-

tion constant of the wave function existing in the matrix element,Hﬁld.

Substituting ik in Equation (35)* and using Equation (34)% we have

e P .
g (0, d)= = |F(8,¢)|* < (36)%

Cc i

where. C is the constant and |F( 0, 9) 2 corresponds to the per-

turbation matrix elements| Hg, |2.

Using the formula for the expansion of a plane wave in terms of
spherical harmonics, we can reproduce Butler's theory from Equa-
tion (33)* (see Appendix). Although the theory of Butler neglects all
Coulomb effects and the reaction effects of the various outgoing

(9) 16

waves in the stripping process, a comparison of the reaction O

(p,d)O1 5 with Butler's results shows that the position of the maximum
is well reproduced by the theory. On the other hand, at higher
angles, the theoretical curve falls much faster than do the experi-
mental points. It appears that Butler's theory is able to explain, at
least in a semiqualitative way, the observed angular distribution.

The same conclusion can be drawn for the reaction C14(p,t)C12.

The plane-wave approximation discussed above ignores two in-
teractions: (1) the long-range repulsive Coulomb force, and (2) the
short-range nuclear interaction. Both these interactions give rise
to a distortion of the wave function, and in order to obtain detailed
agreement between theory and the experimental results for stripping
reactions, as well as for pick-up reactions, it is essential to take
these into account,especially if the energies of the incident particles
are high enough to enable them to penetrate the Coulomb barrier and

approach within the region of the nuclear range. Calculation of the

- 16 -
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distorted-wave Born approximation has been made by using a compu-
ter program written by Tobocman and coworkers(1o),and experimental
stripping cross sections are found to agree with distorted-wave Born
approkimatién, as pointed out by J. Rapaport, A. Sperduto, and W.
blished (11

Ve

W. Buechner in an art

In general, the model-independent selection rules can also be

used to determine the change of angular momentum and parity in a

stripping process. The rules are expressed as follows:

| v
v'l(lji“el__z')lgjr$11+€+—é— (37)*

(29)\x
(38)*
where J; is the initial angular momentum, Jp is the final angular
momentum, and 1 has been discussed above in Equation (9). If the
angular momentum of the target nucleus is O+, the final state will

have angular momentum J; = £ + } and parity 7= (—1)‘4 .

III. Applications of Deuteron Stripping Reaction

The (d,n) process at high energies was historically uséd as the
first source of neutrons with energies of the order of 100 Mev. When
a beam of deuterons of energy much greater than the binding energy
of the deutefqn impinges on a target of any substance, neutrons
which are fairly homogeneous in energy and strongly collimated in
the forward direction are stripped off in considerable intensity. (12)
At 190 Mev., the neutron yield from a 0.5-in. Be target is about 2%

and the mean energy is about 90 Mev. The half-width of the angular



purity of shell-model states. For instance, in the reaction p3
P32, the target nucleus has anguiar momentum Ji = §% (an odd 251/2
proton), and the ground state of P32 is expected to be formed by
adding a neutron in a d3/2 state. The two j-values, jp = + and jn =
3/2 can combine to Jr = 17 or 2¥. The 1 state happens to be the
ground state. If we apply the model-independent rules (37)%* and (38)*
we find that the 1% state can be reached byan 1=0andan 1= 2’

neutron, whereas the shell-model state d3/2, of course, requires

-
0
-

------

= 2. The question raised by Bethe and Butler(1‘3) was: Wiil a
stripping experiment yield an angular distribution consistent with
1 =2, with 1 = 0, or with a mixture of these cases? The experiment
was performed by Parkinson and coworkers. (14) They found an an-
gular distribution consistent with 1 = 2 and very little, if any, trace
of 1 = 0 contribution. In the particular example chosen, the test is a
very sensitive one because 1= 0 stripping gives a cross section that
is one order of magnitude larger at the maximum than does 1 =2
stripping under similar circumstances. The result is therefore a
great tribute to the shell model. Some other examples can be found

in different articles.

APPENDIX

The expression for the cross section is

P -
79 ,86):(/121—);;‘)2 _Iflf(ﬁts ‘e‘qz‘r“d’rza,[e-l?l'?‘zvlz(?u)
(A-1)

(ﬁn(?xa d®r 12]?



We know the bound-state wave function (f)_ ? 2 ) satisfies
2
(— ——"‘sz(ru)""e 12 j¢12(r12) 0 (A-2)
4#12 A\ =7
Also
2 2
(— v _q_l e"?! s =0 (A—B)
2#12 2/112

Multiplying Equation (A-2) on the left by e“'?l LY and Equation
(A-3) on the left by O 12 (T:2) > and then subtracting and integrating

over ?12, we obtain
2

- qQ
)e‘“’x : [V (r12)+£12+273¢1z(r12)d I,

1
—2}112

—ia . — -
J[e Tar 1z V€2¢12(?12)-¢12 (T12)Vie e~ l-rizyd sy,

where we have used the property that surface contributions vanish.

Theref 6re '

2
je—-lql r’zvn(?u)QS 16(F1:) dor y =— ( € u+2q‘ )X (A-5)
—_ - — /‘12
Se—lq’. '”95 12(T12)d?ry,
From Equations (A-5), (A-1), and (31)* we obtain (after neglecting

the interaction V13)
f(e ¢)—“‘ (g1 +i )91(6’1)?3(@) (A—6)
2 2}112
Thus
0 ~Hpe Pe , 2 . _
08,9 =5~ p1<e1+2—> (g @], (A-7)
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where
4,(q1) = je-*%-‘ﬂzqs,z(?,z)ds?” (A-8)
44(qs) = §é A(Th)etdsFandor, ' (A-9)

If the bound nuclei (1 + 2) and (2 + 3) are in definite orbital-angu

2
momentum states (112,M1 ») and (Ip3,Mp3) respectively, we can write

¢12(F:2):¢12(r12)Y212m]2(?12) (A-10)
9523(?23):(f)za(rza)Yenmu(fzs) (A-”)

where Y (*) are the usual spherical harmonics, £ is the unit vector
specifying the direction with respect to 6 and ¢ , and ¢ (r) are
the radial wave functions. In both Equations (A-10) and (A-11), tte
spins of the bound states are ignored. Using the formula for the

expression of a plane wave in terms of spherical harmonics

_ oo 4 N

eik.?:4n2§ E__“Z;éje(kr)ng(f)Ygt(k) (A-12)
we have

Jem.?yzm (Frdf = 4xiljpckr) You k) (A-13)

Therefore, from Equations (A-8), (A-9), (A-10) and (A-11) we obtain

91(61) =4r (—1 )éuYlemu((li:) jriz(ﬁn(rn)x (A-14)
jé,a(qxr 2 dr gy,

- 20 -
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J

£ f;l')»:d. T g * PEA \(“z L . N
g3visJ LR G Z 2sVH22J)T 2 (_st(rzs).],éz3 X (A-—15)
(qarzs)drzs

Substituting Equations (A-14) and (A-15) in Equations (A-6) and(A-
7) and using the usual procedure of evaluating the cross section by
averaging over the initial magnetic quantum number Mqo and summ-

ing over the final magnetic quantum number M,,, we obtain

£C0,6) =8x(i)lss ‘ew;zf( €1zt kl

)X
(1+2)48—> 14+( 24+8) 2;!12

(A-16)
£yam, QY 2, m, (@:)R,(q:IR 5(qs)

and
2

o(0,9) :4(47z)’ﬂwf+&(€u+q

(1+2)48—514(2+38) Pi 2;‘”

1
Zélz‘f"l M,-‘,Zu“ |Yélzmn(ql)PZ“m”(Qa)]’R,(q,)R§ (qs)

)i x

o Pr qi :
= 4ﬂiﬂfp_1( Eu+2ﬂ”) (2 ezs‘l"l JR#(q,)R}(qs), (A-17)
where
w 3
Rl(ql): rlzz(ﬁlz(ru)_]g”(_(hr 12)dry, (A-18)
0
o , .
Ra(,Qa):S r23<}52,(r“)J€“(q,r“)dr” (A-19)
In Equation (A-17) we have used the identity
| 24 41
> Ingl 2 = T_
m=-— T

Equation (A-17) is the theory of Bulter.
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